# **Organic Chemistry**, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

# **Chapter 3** Intro. to Organic Molecules and Functional Groups

Prepared by Layne A. Morsch The University of Illinois - Springfield

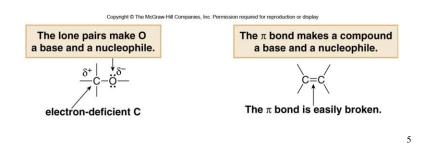
Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

# **Functional Groups**

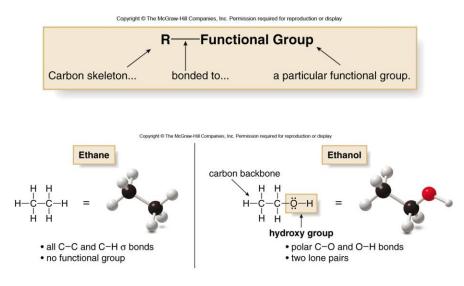
- **3.1 Functional Groups**
- 3.2 An Overview of Functional Groups
- 3.3 Intermolecular Forces
- **3.4 Physical Properties**
- 3.5 Application: Vitamins
- 3.6 Application of Solubility: Soap
- 3.7 Application: The Cell Membrane
- 3.8 Functional Groups and Reactivity
- **Biomolecules**

# **Functional Groups**

- A functional group is an atom or a group of atoms with characteristic chemical and physical properties.
- Most organic molecules contain a carbon backbone consisting of C-C and C-H bonds to which functional groups are attached.
- Structural features of a functional group include:
  - Heteroatoms—atoms other than carbon or hydrogen.
  - $\pi$  Bonds most commonly occur in C-C and C-O double bonds.


# **Functional Groups**

3


- Functional groups distinguish one organic molecule from another.
- They determine a molecule's:
  - geometry
  - physical properties
  - reactivity

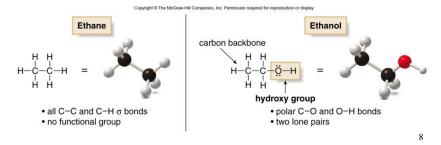
## **Reactivity of Functional Groups**

- Heteroatoms and  $\pi$  bonds confer reactivity on a particular molecule.
  - Heteroatoms have lone pairs and create electrondeficient sites on carbon.
  - A  $\pi$  bond makes a molecule a base and a nucleophile, and is easily broken in chemical reactions.



# Parts of a Functional Group




## Ethane, a Molecule with No Functional Group

- This molecule has only C—C and C—H  $\sigma$  bonds.
- It contains no polar bonds, lone pairs, or  $\pi$  bonds.
- Therefore, ethane has no reactive sites (functional groups).
- Consequently, ethane and molecules like it (alkanes) are very unreactive.

7

## Ethanol

- This molecule has an OH (called a hydroxy group) attached to its backbone.
- Compounds containing an OH group are called alcohols.
- The hydroxy group makes the properties of ethanol very different from the properties of ethane.
- Ethanol has lone pairs and polar bonds that make it reactive.
- Other molecules with hydroxy groups will have similar properties to ethanol.



# Hydrocarbons

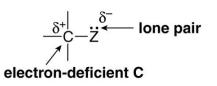
- Hydrocarbons are compounds made up of only the elements carbon and hydrogen.
- They may be aliphatic (ex. alkanes, alkenes, alkynes) or aromatic.

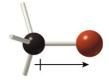
| Type of compound  | General structure | Example                         | Functional group |
|-------------------|-------------------|---------------------------------|------------------|
| Alkane            | R-H               | CH <sub>3</sub> CH <sub>3</sub> | -                |
| Alkene            | )c=c              | H H<br>H H                      | double bond      |
| Alkyne            | —C≡C—             | H−C≡C−H                         | triple bond      |
| Aromatic compound |                   |                                 | phenyl group     |

**Aliphatic Hydrocarbons** 

- Aliphatic hydrocarbons have three subgroups.
  - Alkanes have only C—C  $\sigma$  bonds and no functional group.
  - Alkenes have a C—C double bond.
  - Alkynes have a C—C triple bond.

## **Aromatic Hydrocarbons**


- Aromatic hydrocarbons are so named because many of the earliest known aromatic compounds had strong, characteristic odors.
- The simplest aromatic hydrocarbon is benzene.
- The six-membered ring and three  $\pi$  bonds of benzene comprise a single functional group, found in most aromatic compounds.



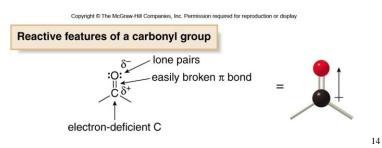

## Functional Groups with Carbon-Heteroatom (C-Z) σ bonds

- $\bullet$  Several types of functional groups contain C-Z  $\sigma$  bonds.
- The electronegative heteroatom Z creates a polar bond, making carbon electron deficient.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display






# Functional Groups with C-Z $\sigma$ bonds

| Type of compound | General structure                                             | Example                            | 3-D structure  | Functional group                |
|------------------|---------------------------------------------------------------|------------------------------------|----------------|---------------------------------|
| Alkyl halide     | R—X:<br>(X = F, Cl, Br, I)                                    | СН <sub>3</sub> —Ё:                |                | <b>−X</b><br>halo group         |
| Alcohol          | R−ÖH                                                          | СН₃—Ö́Н                            | <b>نی</b> *    | -OH<br>hydroxy group            |
| Ether            | R−Ö−R                                                         | СН₃-Ö-СН₃                          | ૾ૢ૽૽૾૾ૢૢ૽૾ૼૢૺૻ | -OR<br>alkoxy group             |
| Amine            | R—ŇH <sub>2</sub> or<br>R <sub>2</sub> ŇH or R <sub>3</sub> Ň | СН <sub>3</sub> —ЙН <sub>2</sub>   |                | -NH <sub>2</sub><br>amino group |
| Thiol            | R— <u>Ş</u> H                                                 | CH₃− <u>Ş</u> H                    | ۰ <b>۳</b> ۰   | -SH<br>mercapto group           |
| Sulfide          | R— <u>S</u> —R                                                | CH <sub>3</sub> -S-CH <sub>3</sub> | <u>ີສ</u> ີສ   | -SR<br>alkylthio group          |

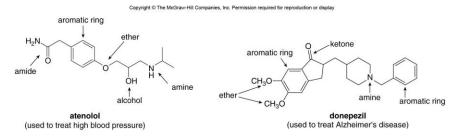
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

# Functional Groups with C=O Group

- This group is called a "carbonyl group".
- The polar C-O bond makes the carbonyl carbon an electrophile, while the lone pairs on O allow it to react as a nucleophile and base.
- The carbonyl group also contains a  $\pi$  bond that is more easily broken than a C-O  $\sigma$  bond.



| pe of compound     | General structure                                               | Example                                               | 3-D structure        | Functional group                                         |
|--------------------|-----------------------------------------------------------------|-------------------------------------------------------|----------------------|----------------------------------------------------------|
| Aldehyde           | :0:<br>=<br>R <sup>_С</sup> _Н                                  | :0:<br>СН <sub>3</sub> СН                             |                      | C=O<br>carbonyl group                                    |
| Ketone             | :0:<br>=<br>R <sup>_C</sup> _R                                  | :0:<br>CH3 <sup>CC</sup> CH3                          | `3 <sup>•</sup> 3`   | C=O<br>carbonyl group                                    |
| Carboxylic<br>acid | :0:<br>Ш<br>R^С_ÖH                                              | :0:<br>С_<br>С ён                                     | ·g <sup>i</sup> ≁    | -COOH<br>carboxy group                                   |
| Ester              | ;0:<br><sup>□</sup><br>R <sup>∠C</sup> \ÖR                      | :0:<br>Ш<br>сн <sub>3</sub> С ёсн <sub>3</sub>        | ુ <mark>કે</mark> સં | -COOR                                                    |
| Amide              | :0:<br>  <br>R <sup>-C</sup> N <sup>-H</sup> (or R)<br>H (or R) | :0:<br>сн <sub>3</sub> <sup>_С</sup> _Юн <sub>2</sub> | °g <sup>≜</sup> ∳    | -CONH <sub>2</sub> ,<br>-CONHR, or<br>-CONR <sub>2</sub> |
| Acid<br>chloride   | :0:<br>""<br>R <sup>_C</sup> Č_Çi:                              | CH3 CH3 CH                                            |                      | -COCI                                                    |


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

## **Importance of Functional Groups**

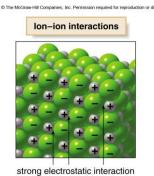
A functional group determines <u>all</u> of the following properties of a molecule:

- bonding and shape
- type and strength of intermolecular forces
- physical properties
- nomenclature
- chemical reactivity

# Molecules can Contain Several Functional Groups



- Each of these molecules have several different functional groups
- These molecules would also have several different types of reactivity


17

# **Intermolecular Forces**

- Intermolecular forces are interactions that exist between molecules.
- Functional groups determine the type and strength of these interactions.
- Ionic and covalent compounds have very different intermolecular interactions.

# **Ion-Ion Interactions**

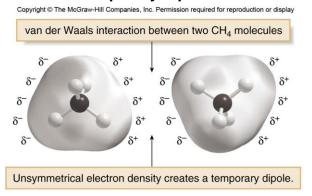
- Ionic compounds contain oppositely charged particles held together by extremely strong electrostatic interactions.
- These ionic interactions are much stronger than the intermolecular forces present between covalent molecules.



19

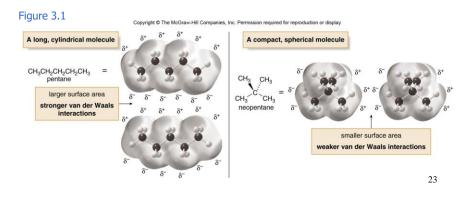
# **Intermolecular Forces in Covalent Molecules**

- Covalent compounds are composed of discrete molecules.
- The nature of the forces between molecules depends on the functional group(s) present.
- There are three different types of interactions, shown below in order of increasing strength:
  - van der Waals forces
  - dipole-dipole interactions
  - hydrogen bonding


### van der Waals Forces

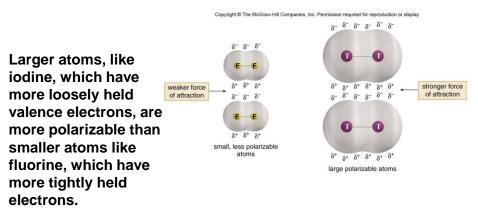
- van der Waals forces are also known as London forces.
- They are very weak interactions caused by momentary changes in electron density in a molecule.
- They are the only attractive forces present in nonpolar compounds.

21


## van der Waals Forces in Methane

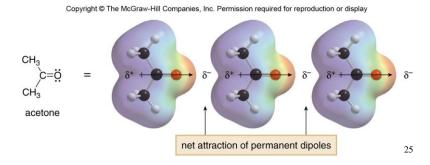
- CH<sub>4</sub> has no net dipole.
- At any one instant its electron density may not be completely symmetrical, resulting in a temporary dipole.
- This can induce a temporary dipole in another molecule.




## van der Waals Forces and Surface Area

- All compounds exhibit van der Waals forces.
- The larger the surface area of a molecule, the larger the attractive force between two molecules, and the stronger the intermolecular forces.

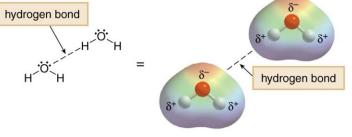



## van der Waals Forces and Polarizability

 Polarizability is a measure of how the electron cloud around an atom responds to changes in its electronic environment.



# **Dipole-Dipole Interactions**


- Dipole-dipole interactions are the attractive forces between the permanent dipoles of two polar molecules.
- The dipoles in adjacent molecules (e.g., acetone below) align so that the partial positive and partial negative charges are in close proximity.
- These attractive forces caused by permanent dipoles are much stronger than weak van der Waals forces.



## Hydrogen Bonding

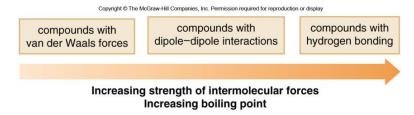
- Hydrogen bonding typically occurs when a hydrogen atom bonded to O, N, or F, is electrostatically attracted to a lone pair of electrons on an O, N, or F atom in another molecule.
- Hydrogen bonding is the strongest of the three types of intermolecular forces.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



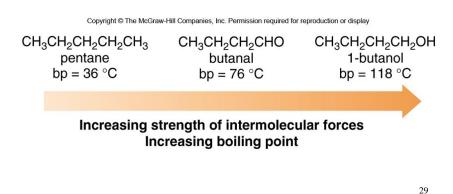
# Intermolecular Forces—Summary

As the polarity of an organic molecule increases, so does the strength of its intermolecular forces.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

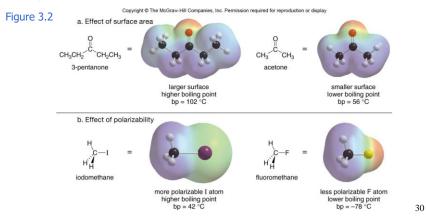
| Type of force    | <b>Relative strength</b> | Exhibited by                                  | Example                                                                                                                                                                                                      |
|------------------|--------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| van der Waals    | weak                     | all molecules                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CHO<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH |
| dipole-dipole    | moderate                 | molecules with a net dipole                   | CH3CH2CH2CHO<br>CH3CH2CH2CH2OH                                                                                                                                                                               |
| hydrogen bonding | strong                   | molecules with an<br>O−H, N−H, or H−F<br>bond | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                                                                                                                           |
| ion–ion          | very strong              | ionic compounds                               | NaCl, LiF                                                                                                                                                                                                    |

27

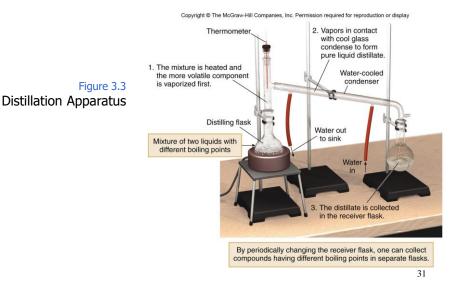

# **Physical Properties—Boiling Point**

- The boiling point of a compound is the temperature at which liquid molecules are converted into gas.
- In boiling, energy is needed to overcome the attractive forces in the more ordered liquid state.
- The stronger the intermolecular forces, the higher the boiling point.
- For compounds with approximately the same molecular weight:




# **Boiling Point and Intermolecular Forces**

- The relative strength of the intermolecular forces increases from pentane to butanal to 1-butanol.
- The boiling points of these compounds increase in the same order.

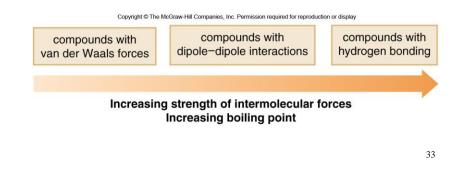



## **Other Factors Affecting Boiling Points**

- For compounds with similar functional groups:
  - The larger the surface area, the higher the boiling point.
  - The more polarizable the atoms, the higher the boiling point.



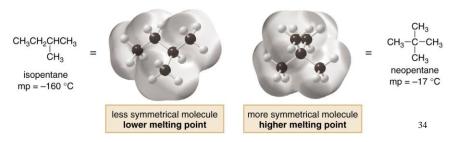
# Separation of Liquids Having Different Boiling Points




# **Melting Point**

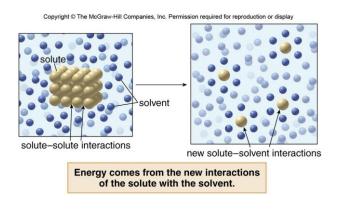
- The melting point is the temperature at which a solid is converted to its liquid phase.
- In melting, energy is needed to overcome the attractive forces in the more ordered crystalline solid.
- The stronger the intermolecular forces, the higher the melting point.
- Given the same functional group, the more symmetrical the compound, the higher the melting point.

# **Melting Point Trends**


- For covalent molecules of approximately the same molecular weight, the melting point depends upon the identity of the functional group.
- The stronger the intermolecular attraction, the higher the melting points (the same is true for boiling points).



# **Effect of Symmetry on Melting Points**

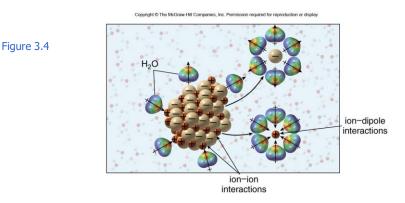

- For compounds having the same functional group and similar molecular weights, the more compact and symmetrical the shape, the higher the melting point.
- A compact symmetrical molecule like neopentane packs well into a crystalline lattice whereas isopentane does not.
- Neopentane has a much higher melting point than isopentane.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



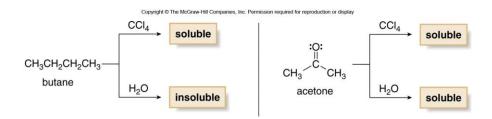
## **Solubility**

- Solubility is the extent to which a compound, called a solute, dissolves in a liquid, called a solvent.
- The energy needed to break up the interactions between the molecules or ions of the solute comes from new interactions between the solute and the solvent.



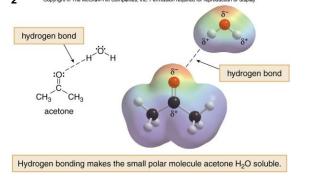

# **Solubility Trends**

- Compounds dissolve in solvents having similar kinds of intermolecular forces -- "Like dissolves like."
  - Polar compounds dissolve in polar solvents like water or alcohols capable of hydrogen bonding with the solute.
  - Nonpolar or weakly polar compounds dissolve in:
    - nonpolar solvents (e.g., carbon tetrachloride and hexane).
    - weakly polar solvents (e.g., diethyl ether).


# **Solubility of Ionic Compounds**

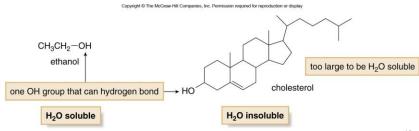
- Most ionic compounds are soluble in water, but insoluble in organic solvents.
- To dissolve an ionic compound, the strong ion-ion interactions must be replaced by many weaker ion-dipole interactions.




## **Solubility of Organic Molecules**

- An organic compound is water soluble only if it contains one polar functional group capable of hydrogen bonding with the solvent for every five C atoms it contains.
- For example, compare the solubility of butane and acetone in  $H_2O$  and  $CCI_4$ .




# **Butane and Acetone Solubility**

- Since butane and acetone are both organic compounds, they are soluble in the organic solvent CCl₄.
- Butane, which is nonpolar, is insoluble in  $H_2O$ .
- Acetone is soluble in  $H_2O$  because it contains only three C atoms and its O atom can hydrogen bond with an H atom of  $H_2O$ .



## Water Solubility of Organic Molecules

- The size of an organic molecule with a polar functional group determines its water solubility.
- A low molecular weight alcohol like ethanol is water soluble.
- Cholesterol, with 27 carbon atoms and only one OH group, has a carbon skeleton that is too large for the OH group to solubilize by hydrogen bonding.
- Therefore, cholesterol is insoluble in water.



#### Hydrophobic and Hydrophilic

- The nonpolar part of a molecule that is not attracted to  $H_2O$  is said to be hydrophobic.
- The polar part of a molecule that can hydrogen bond to  $H_2O$  is said to be hydrophilic.
- In cholesterol, for example, the hydroxy group is hydrophilic, whereas the carbon skeleton is hydrophobic.

41

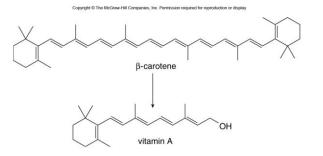
# Solubility Properties of Representative Compounds

#### Figure 3.5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

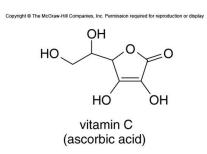
| Type of compound                                                | Solubility in H <sub>2</sub> O                                                                                         | Solubility in organic solvents (such as CCI <sub>4</sub> ) |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| <ul> <li>Ionic</li> <li>NaCl</li> </ul>                         | soluble                                                                                                                | insoluble                                                  |
| <ul> <li>Covalent</li> </ul>                                    |                                                                                                                        |                                                            |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | insoluble (no N or O atom to<br>hydrogen bond to H <sub>2</sub> O)                                                     | soluble                                                    |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH              | <b>soluble</b> ( $\leq$ 5 C's and an O atom for hydrogen bonding to H <sub>2</sub> O)                                  | soluble                                                    |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> OH             | <b>insoluble</b> (> 5 C's; too large to<br>be soluble even though it has an<br>O atom for hydrogen bonding to $H_2O$ ) | soluble                                                    |

#### **Application—Vitamins**


- Vitamins are organic compounds needed in small amounts for normal cell function.
- Most cannot be synthesized in our bodies, and must be obtained from the diet.
- Most are identified by a letter, such as A, C, D, E, and K.
- There are several different B vitamins, so a subscript is added to distinguish them. Examples are B<sub>1</sub>, B<sub>2</sub>, and B<sub>12</sub>.
- Vitamins can be fat soluble or water soluble depending on their structure.

43

44

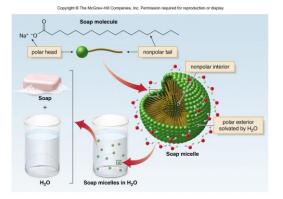

#### Vitamin A

- Vitamin A is an essential component of the vision receptors in our eyes.
- Vitamin A, or retinol, may be obtained directly from the diet.
- It also can be obtained from the conversion of  $\beta$ -carotene, the orange pigment found in many plants including carrots, into vitamin A in our bodies.
- Vitamin A is water insoluble because it contains only one OH group and 20 carbon atoms.



## Vitamin C

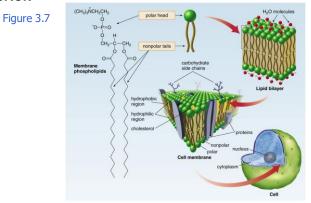
- Vitamin C, ascorbic acid, is important in the formation of collagen.
- Most animals can synthesize vitamin C.
- Humans must obtain this vitamin from dietary sources, such as citrus fruits.
- Each carbon atom is bonded to an oxygen which makes it capable of hydrogen bonding, and thus, water soluble.




**Soap Structure** 

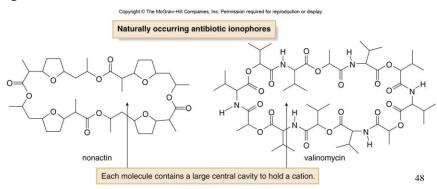
·Soap molecules have two distinct parts:

- There is a hydrophilic portion composed of ions called the polar head.
- There is a hydrophobic carbon chain of nonpolar C-C and C-H bonds, called the nonpolar tail.



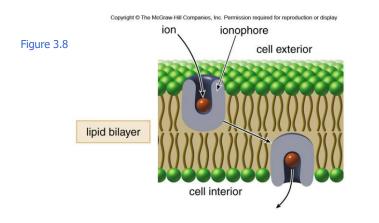



46


## Structure of the Cell Membrane

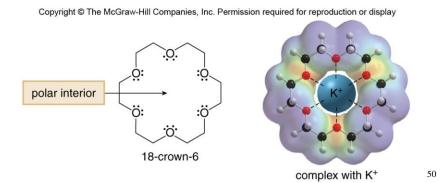
- Phospholipids contain an ionic or polar head, and two long nonpolar hydrocarbon tails.
- In an aqueous environment, phospholipids form a lipid bilayer, with the polar heads oriented toward the aqueous exterior and the nonpolar tails forming a hydrophobic interior.




## **Transport Across the Cell Membrane:**

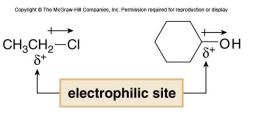
- · lonophores are organic molecules that complex cations.
- They have a hydrophobic exterior that makes them soluble in the nonpolar interior of the cell membrane, and a central cavity with several oxygens whose lone pairs complex with a given ion.




# **Transport Across The Cell Membrane**

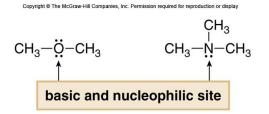
• An ionophore transports an ion across a cell membrane (from the side of higher concentration of the ion to a side of lower ion concentration).



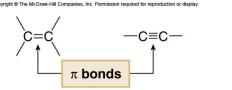

# **Crown Ethers**

- Several synthetic ionophores have also been prepared, including one group called crown ethers.
- Crown ethers are cyclic ethers containing several oxygen atoms that bind specific cations depending on the size of their cavity.




# **Functional Groups and Electrophiles**

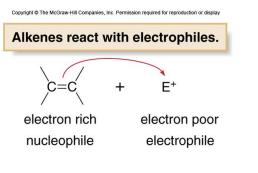
- All functional groups contain a heteroatom, a  $\pi$  bond or both.
- These features create electrophilic sites and nucleophilic sites in a molecule.
- Electron-rich sites (nucleophiles) react with electron poor sites (electrophiles).
- An electronegative heteroatom like N, O, or X makes a carbon atom electrophilic as shown below.




# **Nucleophilic Sites in Molecules**

• A lone pair on a heteroatom makes it basic and nucleophilic.




 $\Box$   $\pi$  bonds create nucleophilic sites and are more easily broken than  $\sigma$  bonds.

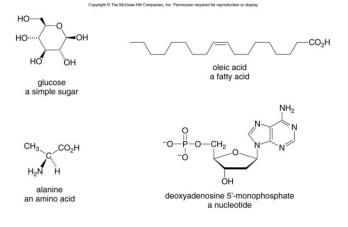


52


## Reaction of $\pi$ Bonds with Electrophiles

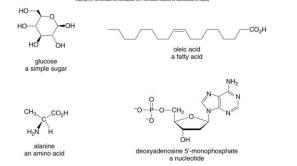
- An electron-rich carbon reacts with an electrophile, symbolized as E<sup>+</sup>.
- For example, alkenes contain an electron-rich double bond, and so they react with electrophiles E<sup>+</sup>.




# **Reaction of Nucleophiles with Electrophiles**

Alkyl halides possess an electrophilic carbon atom, so they react with electron-rich nucleophiles.

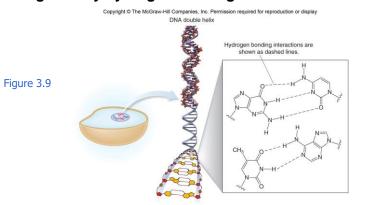



#### **Biomolecules**

- Biomolecules are organic compounds found in biological systems.
- Many are relatively small with molecular weights of less than 1000 g/mol.
- Biomolecules often have several functional groups.



#### **Families of Biomolecules**


- There are four main families of small biomolecules:
  - Simple sugars—combine to form complex carbohydrates like starch and cellulose (Covered in Chapter 28)
  - Amino acids—join together to form proteins (Chapter 29)
  - Nucleotides—combine to form DNA (Chapter 28)
  - Lipids—commonly form from fatty acids and alcohols (Chapters 10, 22, and 30)



56

## **DNA Double Helix**

- DNA is contained in the chromosomes in the nucleus of the cell
  - Stores all the genetic information in an organism
  - Consists of two long strands of polynucleotides held together by hydrogen bonding

